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Abstract

The problem of selecting which suppliers, and how much of different items

to order from each, involves multiple, often conflicting, criteria such as costs

and delivery times. Within real world multi-criteria supplier selection problems

there is inherent uncertainty involved, and consideration of its impacts and

mitigation is a current and important research direction going forward within

the field of supplier selection.

Uncertainty within multi-criteria supplier selection may be in relation to (i)

a decision maker’s ambiguous preferences, such as the importance between crite-

ria, (ii) the suppliers’ supply capacities of, and demand for, different items, and

(iii) known information about suppliers with respect to the set of criteria, such

as each supplier’s delivery times or their average defect ratios. Whilst previous

work has explored the first two of these, less work has explored uncertainty per-

taining to information about suppliers in terms of the criteria and, specifically,

how it could be efficiently reduced. Such uncertainty is an important problem

to address, as it may have a large impact upon an order regarding its perceived

quality compared to its realised quality, so reducing such uncertainty can have

a significant impact.
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This paper presents a Targeted Evidence Collection (TEC) approach for

efficient reduction of uncertainty, pertaining to suppliers, by looking to efficiently

collect additional evidence. The approach looks to utilise and gather evidence

intelligently and dynamically – by considering both the likelihood that each

supplier will be part of a solution, along with a decision maker’s preferences

between criteria – to reduce the uncertainty and efficaciously move towards the

most appropriate solution given no uncertainty. The approach is able to handle

scenarios for which there are both certain and uncertain criteria present, and

can take into account any number of criteria.

The TEC strategy is evaluated against alternative approaches, including

an active learning based approach, for varying numbers of uncertain criteria,

numbers of suppliers, and variations in a decision maker’s preferences. The

experimentation highlights how TEC efficiently reduces uncertainty, relating

to information about suppliers with respect to the set of criteria, requiring

up to three times less evidence than its competitors. In this way, TEC helps

to effectively mitigate the uncertainty’s adverse effects, and reduce the risks

inherent within a supplier selection problem.

Keywords: supply chain management, supplier selection, uncertainty,

multi-criteria decision analysis, multi-objective optimization

1. Introduction

Within Supply Chain Management (SCM), it is estimated that purchasing

of goods and services constitutes up to 70% of total product costs (Ghobadian

et al., 2016), rising to 80% for high-technology firms (Ghodsypour & O’Brien,

2001). Therefore, a critical decision in SCM is selecting the most appropriate

suppliers to achieve the objectives of the supply chain, and ultimately help to ob-

tain competitive advantage. Within Multi-Criteria Supplier Selection (MCSS)

the problem is to determine the amounts of various items to acquire from various

suppliers, such that the overall quality of the solution is most aligned with the

Decision Maker (DM)’s preferences regarding multiple, often conflicting, criteria
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such as price, quality and delivery times, whilst also satisfying the demand for

each item-type, and additional constraints regarding budget and supply capac-

ities.

Typical supplier selection models, such as (Ting & Cho, 2008), look to solve

the MCSS problem via optimisation, under the assumption that all information

is crisp and certain. For example, given a high-technology firm manufacturing

motherboards, which require the purchase of varying amounts of a set of 7 major

items, from a possible set of many suppliers, each supplying one of more of the

items. It will be the case that each supplier will vary with regards to a set of

criteria such as, costs, quality, and delivery; different suppliers will sell the same

item but at different costs, some suppliers will sell the same items but with

different levels of quality. In such a scenario the DM(s) can define preferences

regarding the importance between the criteria, which are then used along with

additional constraints regarding budget and supply capacities, such that the

overall quality of the solution is most aligned to the DM’s preferences.

However, within real world Supplier Selection problems there is inherent un-

certainty (Sawik, 2011); consequently there is a trend in current research to cater

to more practical supplier selection problems by looking to construct effective

decision models that address uncertainty factors (Chai et al., 2013), instead of

formulating the problem in terms of only crisp and certain conditions. Further,

a significant emerging trend in supplier selection research, defined in a recent

review surveying accomplishments and what lies ahead within supplier selec-

tion, is that of transiting from handling uncertainty towards risk analysis (Chai

& Ngai, 2019). Here, the authors identified that although many studies seek

to model uncertainty, such as modelling imprecise information via fuzzy inte-

grated methodologies, a transition is occurring towards greater consideration of

risk factors, exploring, for example, loss aversion and diminishing uncertainty’s

adverse effects.

Uncertainty within MCSS could be in relation to (i) a DM’s subjective pref-

erences, (ii) the demand for, and the suppliers’ supply capabilities of, items,

and (iii) information regarding suppliers’ values (utility) in terms of the set of
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criteria. For example, in our high-technology firm scenario, it may be the case

that there is (i) uncertainty in relation to a DM’s preference of importance be-

tween the criteria, for example, in terms of how much more important cost is

compared to delivery time. Equally, there may be (ii) uncertainty in terms of

the exact demand for each of the 7 item components, as well as uncertainty in

terms of the quantity of different items that each supplier is able to fulfil. There

may also be (iii) uncertainty in relation to information the firm has about each

supplier, in relation to each criterion, such as the delivery times of the different

items from a supplier or the quality of the items.

Various work has looked at uncertainty within supplier selection regarding

(i) user preferences (Guneri et al., 2009, Arikan, 2013, Igoulalene et al., 2014) as

well as (ii) supply and demand uncertainty (Kazaz & Webster, 2015, Zhang &

Chen, 2013, Sounderpandian et al., 2008); there has been less work on (iii) un-

certainty regarding suppliers’ utility in terms of the criteria and specifically how

such uncertainties could be efficiently reduced. However, uncertainty surround-

ing suppliers’ utility regarding the criteria, can have a major impact upon the

realised overall utility of a supplier selection solution, compared to its perceived

overall utility. For example, if our high-technology firm orders items from a sup-

plier with perceived higher item quality than in reality, this would result in an

actual solution with reduced utility when realised, as some item’s quality will be

less than expected and desired. Equally, if our firm perceives that a supplier has

higher item costs than in reality, this supplier may be overlooked within a solu-

tion, despite it representing in reality a suitable supplier to be part of a solution

to best meet the DM’s preferences. Identification of such uncertainty relating

to suppliers, can inform a DM of the amount of risk, due to the uncertainty,

associated with a given supplier selection solution. Moreover, its adverse risk

effects could be diminished through actively looking to reduce this uncertainty.

For example, for a supplier for which there is a lot of uncertainty in relation to

its item defect ratio, we could aim to reduce the uncertainty by collecting more

evidence about the supplier and its items. Such evidence could be obtained in

a variety of ways such as mock orders, customer surveys and/or interview infor-
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mation, market assessments, experts’ opinions, or on-site visits to evaluate the

supplier’s process. Such evidence could help reduce the amount of uncertainty

regarding the supplier and help mitigate any adverse effects, and consequently

diminish the risk associated with a solution. Therefore, actively addressing and

tackling such uncertainty is a critical issue within supplier selection and one

that can have large impact and benefit to a DM.

Given that a plethora of such additional evidence could be sought, due to a

large number of possible suppliers, the choice of what evidence to collect next can

have a large impact upon the effectiveness of the collection, and its usefulness

in impacting on reducing uncertainty. Therefore, it is crucial to consider how

to collect such evidence, to be most impactful for uncertainty reduction.

This paper presents a Targeted Evidence Collection (TEC) strategy, for effi-

cient reduction of uncertainty, pertaining to suppliers, within an MCSS model

such as in (Ting & Cho, 2008). The TEC strategy looks to intelligently target

evidence collection by dynamically considering the likelihood that each supplier

will be part of a solution along with a DM’s preferences regarding the set of

criteria. In this way TEC looks to reduce uncertainty by swiftly gravitating

towards what would be the most appropriate solution given no uncertainty. In

this way, the TEC strategy embodies the ethos of an expert system in the sense

that it relies on a body of knowledge - available evidence in our case - to make

informed decisions about where to focus the evidence collection to reduce the

uncertainty up to a point where the optimisation can provide effective outcomes.

The paper makes the following contributions:

• We introduce the TEC strategy for efficient reduction of uncertainty,

within MCSS, using targeted evidence.

• The strategy is applicable to a large range of amounts of evidence collec-

tion, and we demonstrate its applicability across a varying range.

• For many real-world practical scenarios which mix uncertain and certain

criteria – for example in a scenario where item costs are known with cer-
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tainty but item quality is not – the strategy is able to handle both any

number of criteria and the combination of uncertain and certain criteria.

• TEC is able to scale to a large number of suppliers and we demonstrate

how its effectiveness only becomes more pronounced as the number of

suppliers increases.

• We facilitate more informed decision making, through calculating (and

visualising) the regret associated with a current solution, after any given

amount of evidence collection, to help a DM ascertain the risk associated

with a solution.

• The effectiveness, adaptability and scalability of TEC is evaluated through

an experimental comparison against alternative approaches, including those

based on active learning. The results show that TEC can achieve efficient

reduction in uncertainty in the criteria, to support improved solutions

using less evidence than comparable approaches.

The rest of the paper is structured as follows: related literature is presented

in Section 2; Section 3 defines and describes our strategy; experimentation re-

sults and evaluation are presented in Section 4; and Section 5 concludes.

2. Literature review

MCSS has been explored by approaches that have tackled the problem within

deterministic conditions and without consideration of uncertainty: Ting & Cho

(2008) tackle supplier selection considering criteria of cost, quality and delivery

times, assuming crisp information relating to suppliers regarding these criteria;

similarly, Ayhan & Kilic (2015) tackle supplier selection, using criteria of price,

quality, delivery time, and after sales performance, where past data is used to

gather crisp (percentile) information about suppliers in relation to the criteria.

However, within such MCSS problems there is inherent uncertainty which may

be associated with (i) subjective DM preferences and opinions, (ii) supply and

demand, and (iii) the values for the suppliers’ utility regarding the criteria.

6



Multiple approaches have looked to address uncertainty in supplier selec-

tion in connection with subjective DM preferences and opinions. Guneri et al.

(2009) use fuzzy numbers, within single item-type supplier selection, to repre-

sent uncertainty within multiple DMs’ preferences between criteria, and their

subjective opinions of alternative suppliers. Similarly, uncertainty relating to

the aspiration levels of a DM for each criterion (as well as the demand for each

item-type) has been modelled via a fuzzy mathematical model and then solved

using multi-objective linear programming (Arikan, 2013). Fuzzy trapezoidal

membership functions have been used in (Igoulalene et al., 2014) to model un-

certainty within a group of DMs’ preferences and seek a consensus on selection

of a (single) supplier. The vagueness and ambiguity of experts’ opinions per-

taining to sustainability factors within a Sustainable Supplier Selection Problem

(S-SSP) was tackled by Rabbani et al. (2019). Here, interval-valued fuzzy sets

are used to represent the vague and ambiguous preferences from a group of ex-

perts. An interval-valued fuzzy decision model then calculates novel separation

measures, which are used to rank the set of candidate suppliers. Group supplier

selection has also been explored by Sanayei et al. (2010) for when several deci-

sion makers representing different interests are involved in defining preferences

for the supplier selection problem. In this work, alternatives are evaluated by

eliciting preferences from multiple DMs, via linguistic values as part of a fuzzy

representation of the subjective preferences. The fuzzy preferences are then

utilised within the VIKOR decision methodology to arrive at a solution. Sim-

ilarly, Stević et al. (2019) use triangular fuzzy numbers, when tackling group

supplier selection, to represent a group of expert’s subjective opinions relat-

ing to the set of criteria. These are then aggregated into single triangle Fuzzy

numbers, to be used as part of a Fuzzy Evaluation based on Distance from

Average Solution (Fuzzy EDAS) to evaluate and select suppliers. An approach

titled D-AHP has been proposed in (Deng et al., 2014) to tackle supplier selec-

tion using D numbers – an extension of fuzzy preference relation – to represent

DMs’ subjective preferences. The uncertainty involved in a DM’s preferences,

within Multi-criteria global supplier selection, is tackled in (Chan & Kumar,
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2007), using an approach termed Fuzzy Extended Analytic Hierarchy Process

(FEAHP). The approach uses triangular fuzzy numbers, to represent a DM’s

comparison judgements, to seek to capture the vagueness within such prefer-

ences. An approach for tackling green supplier selection problems is proposed

in (Haeri & Rezaei, 2019). Here, the approach looks to consider interdepen-

dencies between criteria, such as for example, ’technology capability’ having

significant influence on ’pollution production’, as well as take into account un-

certainties associated with DMs’ subjective opinions. The approach proposes a

novel weight assignment model, combining a best-worst method and fuzzy grey

cognitive maps to capture the interdependencies, and grey relational analysis

for processing DMs’ subjective opinions, to calculate a final ordinal ranking of

the set of suppliers. The ramifications of a DM’s subjective judgements within

supplier selection are explored in (Rashidi & Cullinane, 2019), through the use

of different decision methodologies. Both fuzzy DEA and fuzzy TOPSIS are

used to tackle sustainable supplier selection, with criteria such as cost, quality

and social responsibility. The comparison shows that the different methods re-

sulted in differing solutions, and, although TOPSIS performed better regarding

calculation complexity and sensitivity to changes, they recommend initial use

of both methods to aid DM comprehension.

Multiple approaches have also looked to address uncertainty in supplier se-

lection pertaining to supply and demand. Memon et al. (2015) look to tackle

group supplier selection uncertainty in relation to demand and lead-time, as

well as subjective DM preferences. Here, an approach is proposed that uses

combined grey systems theory, for DM opinions regarding criteria and supplier

attributes, and uncertainty theory to help model DM uncertainty and demand

and lead time uncertainty, characterised as being stochastic in nature. This is

used within an uncertain goal programming model to determine supplier selec-

tion and order allocation. Both supply and demand uncertainty within sup-

plier selection is tackled in (Moghaddam, 2015). The uncertainties are handled

through a fuzzy multi-objective mathematical model that looks to determine the

best set of suppliers and the optimal order allocation to the selected suppliers.
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In tackling the multi-criteria problem instead of eliciting subjective DM weight-

ing of the criteria, the approach utilises monte carlo random weights over many

runs to map out a set of trade-off solutions. Uncertainty pertaining to supply

is tackled in (Kellner et al., 2019). Here, supply risk is defined as an objective

to be minimised, within a multi-objective supplier selection problem, alongside

other objectives such as cost. In considering this objective the approach looks

to minimise the covariance of the logistics service between suppliers so as to

mitigate, for example, suppliers in the same region all failing due to a natural

disaster. The approach looks to solve the multi-objective problem by seeking

to find a Pareto front of trade-off solutions between the objectives, allowing

a DM to get an overall picture of the trade-offs involved and compare solu-

tions. Kazaz & Webster (2015) analyse the differences in risk aversion, when

the source of uncertainty is demand and/or supply, and how observed differences

have an effect upon tractability and optimal decisions. Supplier selection and

procurement with stochastic demand is tackled in (Zhang & Chen, 2013), with

a nonlinear mixed integer programming model. The model looks to optimally

select suppliers and allocate the ordering quantity among the selected suppliers,

in order to minimise the total cost that additionally considers holding and short-

age costs, along with purchase costs. Optimisation of order quantity decisions,

from suppliers from developing countries, considering the loss risks due to sup-

ply uncertainty, is explored in (Sounderpandian et al., 2008). In this approach,

a genetic algorithm is utilised to solve a stochastic programming model which

considers the uncertainties of supply. They found that just increasing the order

quantities may not be the appropriate approach when considering changes due

to demand uncertainties. Uncertainty relating to demand and supply capacities

of suppliers is tackled via contingency strategies in (Bilsel & Ravindran, 2011).

Probability distributions are used to determine and assign backup suppliers who

could be used if there is an issue, due to uncertainty, with a primary supplier

selected as part of a solution. In this way, the approach looks to facilitate con-

tingency plans to handle, for example, unexpected higher demand or supply

issues from a primary supplier.
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Some work has explored uncertainty of information pertaining to suppliers’

utility in terms of the criteria. Uncertainty relating to criteria such as defect risk

and reliability of suppliers is considered in (Sawik, 2010). Here a mixed integer

model is utilised, and consideration of the risk associated with the uncertain

values of such criteria – calculated as expected values using past observations –

is considered via DM defined thresholds of acceptability. These are then incor-

porated into the model to consider purchasing costs of additional items required

to compensate for defective and delayed items. The approach is looking to incor-

porate, and compensate for, the risk associated with the available evidence into

the model, whereas in TEC we seek to actively reduce the uncertainty through

efficient evidence collection.

The problem of uncertainty relating to suppliers and the item-types they sup-

ply, has been addressed via a mixed integer linear programming model (Amorim

et al., 2016) focusing on food supply chain management. Here, various sources

of supplier uncertainty are considered, such as raw materials availability, lead

time and spot price (as well as uncertainty of demand for final products). The

objective function seeks to maximise both profit and the conditional value-at-

risk (Rockafellar & Uryasev, 2002). In this way, risk measures are incorporated

within the supplier selection model such that worst-case scenarios are drasti-

cally reduced. In the approach a solution is sought that considers the risks of

uncertainty when looking to calculate a solution, whereas in TEC our objective

is to actively reduce the uncertainty.

The problem of supplier selection under conditions of total quantity discount,

where suppliers offer potentially fluctuating and uncertain discounts based on

the quantity of products purchased, along with upfront fixed discount activation

costs, is explored in (Manerba et al., 2018). The approach tackles the scenario

where uncertainty, relating to product prices is initially present, through a gen-

eral two-stage Stochastic Programming formulation. The first stage looks to

determine which suppliers to involve and product quantities, so as to deter-

mine in which discount interval the quantity is expected to lie. Next, given

that discount intervals are then assumed locked by the first-stage decisions, the
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second stage consists of recourse decisions that look to optimally adjust the

quantities in each chosen supplier. Here uncertainty is only considered for the

single criterion of price and is always characterised as stochastic, implying it

is due to random processes. Conversely, in TEC we look to tackle uncertainty

relating to multiple criteria within problems where uncertainty results from a

lack of evidence (as opposed to being purely stochastic in nature). The authors

also explore an alternative scenario, of the supplier selection under conditions

of total quantity discount work problem, with only demand uncertainty (and

without cost uncertainty). This is found to be a more complex scenario and so

in subsequent work a more efficient solution to demand uncertainty is proposed

(Manerba & Perboli, 2019), exploiting the structural properties of the problem

with a progressive Hedging PH-based heuristic approach.

A hybrid ensemble and AHP approach is used in (Hosseini & Al Khaled,

2016) to consider uncertainty regarding suppliers to calculate a resilience value

of potential suppliers, for criteria relating to their absorptive, adaptive, and

restorative capacities. These are calculated using past evidence, e.g., delivery

performances from suppliers, so unlike TEC there is no notion of targeting

for efficient evidence collection. They conclude that robustness, reliability and

rerouting are the most important enablers of supplier reliance, the ranking of

which is then used, along with user preferences relating to the criteria, for

selection of the best (single) supplier.

To improve quality performance of suppliers – looking to improve the utility

of some aspect – under uncertainty, a Poisson-gamma model within a Bayesian

framework has been utilised in (Quigley et al., 2017). The framework seeks

to reduce non-conformance rates by considering the trade-off between obtain-

ing more information verses seeking improvement based on current information.

Thus, the approach helps a DM ascertain if it is more valuable to obtain addi-

tional information about a supplier (through, for example, more supplier visits

and audits) before attempting improvements, or making decisions directly aimed

at quality improvements (such as training and development of buyer resources

into the supplier) in light of the current state of knowledge. Therefore, although

11



tackling a somewhat different problem – looking to actually improve the quality

within suppliers, whereas in our TEC approach we focus on efficient selection

(targeting) decisions for uncertainty reduction – both approaches adopt a similar

philosophy of looking to decide what to target so as to be most useful.

In summary, previous work has either tackled uncertainty within MCSS

with a focus on uncertainty in user preferences or supply and demand, or tack-

led uncertainty of supplier information without direct consideration of how to

efficiently seek to reduce it. Conversely, TEC tackles uncertainty of supplier

information, pertaining to the criteria, through looking to target and reduce

the uncertainty in an efficient way.

3. The TEC Strategy

Our TEC approach seeks to efficiently reduce uncertainty associated with

supplier information relating to the criteria within MCSS problems. Figure

1 shows the components of TEC, highlighted as those within the dotted red

rectangle, and their interaction with other components. The targeted evidence

collection strategy requires a set of parameters (step 1 in Figure 1) that in-

clude the candidate suppliers to consider, the criteria for the supplier selection

weighted according to the user’s preferences, the number of items required of

each type and the allocated budget for the evidence collection. Taking into ac-

count these initial parameters, the next step is to collect an initial sample (step

2 ) from the available evidence to bootstrap the targeting approach. This ini-

tial evidence is used by the TEC strategy to calculate the initial estimates for the

required criteria (step 3 ), which in turn are used by the optimisation process

(MCSS) to obtain a preliminary selection of suppliers (step 4 ). This selection

is used by the TEC strategy to focus the evidence collection on those suppliers

that were selected or, based on their margins of error, are candidates to be part

in the selection. Having reduced the problem space to a subset of the suppliers,

the TEC strategy keeps collecting additional evidence (step 5 ) to refine the

criteria estimates that are, again, used by the optimisation process (step 6 ).
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Figure 1: TEC components and operation

Steps 4 to 6 are repeated until certain conditions (explained in Subsection

3.3) are met and the final selection of suppliers (that includes the number of

each type of items from each supplier) is generated by the optimisation process

(step 7 ). TEC seeks to reduce uncertainty through iterative MCSS optimi-

sation and evaluation, to target additional evidence to gravitate towards the

most appropriate solution given no uncertainty. Next, we first briefly outline

the MCSS component, then detail our evidence targeting strategy, before then

discussing TEC’s operation.

3.1. Multi-Criteria Supplier Selection

The base Multi-Criteria Supplier Selection (MCSS) problem, such as that

defined in (Ting & Cho, 2008), which TEC utilises as shown in Figure 1, can be

defined as: Given a collection of suppliers S = {s1, . . . , sm} from whom we wish

to acquire varied types of items I = {i1, . . . , ip}, a set of weighted user criteria

C = {c1, . . . , cn} used to evaluate the candidate suppliers, and a number of items

R required from each type in I , identify the number of items in I that should be
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purchased from each supplier in S, while optimising the criteria in C. For full

operational details and mathematical definitions of the model’s optimisation and

constraints see (Ting & Cho, 2008). If multiple DMs are tasked with giving their

preferences regarding the criteria then a group aggregating method such as (Abel

et al., 2015) can be utilised to aggregate the group’s views, with consideration

of possible unequal weights of importance between the DMs, into a single set of

weights for the criteria.

3.2. Evidence Targeting

The process to target evidence collection for supplier selection problems,

given that there is uncertainty about the value for each supplier for each criteria

of concern (i.e., real values for C over S), is to identify for which suppliers addi-

tional evidence should be collected to improve solutions. Hence, the question is:

what evidence should we collect next to reduce uncertainty to enable improved

solutions? The TEC approach identifies suppliers for whom additional evidence

needs to be collected by analysing the overlap of the confidence intervals of

each criterion for each candidate supplier. This is then used to target those

suppliers that contribute to the solution or non-contributing suppliers whose

confidence intervals overlap with confidence intervals of contributing suppliers.

This statistical technique is utilised within TEC as it facilitates both explo-

ration (coverage) and exploitation (focusing) of the objective space. Formulas

for calculating confidence interval values for a criterion are given in Appendix

A.

For a given criterion, the confidence intervals of two suppliers can overlap to

an extent that may cause uncertainty about which one should contribute to the

solution. This is because the real value of the criterion may lie in the overlap zone

and, hence, there is no certainty about which supplier outperforms the other for

that criterion. The approach, following (Knezevic, 2008), is to determine not

only whether two confidence intervals overlap, but also the extent of this overlap

by comparing the difference between the means of those confidence intervals. If

the result indicates that the confidence intervals overlap and their means are
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significantly different, then, for the purpose of the TEC strategy, the intervals

are considered to significantly overlap, which is taken as strong evidence of

whether suppliers are in contention to contribute to the solution. For example,

assume that the estimated value of a criterion applied to supplier 1, ĉs1 , is

higher than that of supplier 2, ĉs2 , then, the confidence intervals of s1 and s2

for that criterion overlap if the lower bound of the confidence interval of s1 is

less than or equal to the upper bound of the confidence interval of s2. This can

be expressed as an inequality where e is the margin of error (Equation A.2) for

criterion c applied to suppliers s1 and s2:

ĉs1 − eĉs1 ≤ ĉs2 + eĉs2 or ĉs1 − ĉs2 ≤ (eĉs1 + eĉs2 ) (1)

If there is overlap, then the following inequality determines if the means of two

confidence intervals are not significantly different (Bulmer, 1979):

ĉs1 − ĉs2 ≤
√
e2ĉs1

+ e2ĉs2
(2)

If the result of the right hand side of Equation 2 is greater or equal than

the difference between the estimated values, then the means are not significantly

different. If the means are not significantly different and there is overlap between

two confidence intervals, we regard this as a significant interval overlap between

them, and therefore that there is benefit from collecting additional evidence on

both suppliers in order to determine which is the most suitable.

For example, consider four candidate suppliers S = {s1, s2, s3, s4} that need

to be evaluated on their defect ratio. Assume that some evidence has already

been collected in the form of mock orders. The initial evidence is used to

calculate the estimated defect ratio of these suppliers and their margins of error;

the resulting confidence intervals are shown in Figure 2. In this example, assume

that s1 contributes to the solution. The overlap analysis between s1 and the

other three suppliers shows that: (i) there is no overlap between suppliers 1 and

2 as the lower bound of the confidence interval of s1 is greater than the upper

15



Figure 2: Analysis of overlapping between confidence intervals

bound of the interval of s2, hence, this does not satisfy the inequality in Equation

1, (ii) there is overlap between suppliers 1 and 3 (satisfying Equation 1) and

the difference between the means is significant (not satisfying Equation 2), and

(iii) there is overlap between suppliers 1 and 4 and the difference between the

means is not significant (satisfying Equation 2), thus this interval overlap can

be considered as significant for TEC and, hence, further evidence collection is

required to determine which supplier (s1 or s4) should contribute to the solution.

Therefore, only s1 and s4 are considered for additional evidence collection; s1

as it contributes to the solution and s4 as its confidence interval significantly

overlaps with a confidence interval of s1.

3.3. Description of the TEC strategy

When applying the TEC strategy to the MCSS problem we have a set of

suppliers S = {s1, . . . , sm}; a set of item types I = {i1, . . . , ip}; a set of criteria

C = cC∪uC, where cC = {c1, . . . , cl} are crisp criteria and uC = {ĉ1, . . . , ĉo}

are uncertain criteria; a set of criteria weights W = {w1, . . . , wn}; a set of

procuring budgets Bi per item type; a matrix of suppliers’ capacities Scs,i with

the item type maximum amounts each supplier has committed to provide; a set

Ri with the item types required; a confidence level cL and margin of error e;

and, for evidence collection, a budget b.

The TEC algorithm is presented as pseudo-code in Figure 3; we explain it

using an example similar to one presented in (Ting & Cho, 2008) with seven
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suppliers and seven item types, with an additional consideration that there is

now uncertainty regarding criteria values.

We use a single cost (as a crisp criterion) that already includes the trans-

portation, unit price and ordering costs, and two uncertain criteria, viz., the

product quality in terms of the defect ratio and the delivery reliability in terms

of the delayed orders ratio.

The TEC approach evaluates the overlapping between the confidence in-

tervals surrounding the estimated values for each supplier and each criterion

in contention. This approach aims to focus the evidence collection on those

suppliers for which there is the highest uncertainty on whether they should

contribute, and to what extent, or not to a solution to the supplier selection

problem. Furthermore, the additional evidence collected reduces the uncertainty

and the number of candidate suppliers that require more evidence. This process

is repeated while there is still uncertainty on the number of items each supplier

should contribute and while there is budget available to collect more evidence.

As a consequence, the algorithm finds the number of items each supplier should

contribute to satisfy the optimisation problem and includes, for informative

purposes, the level of regret associated with the proposed solution.

The first step in the TEC algorithm computes the sample size for the number

of pieces of evidence required to achieve a statistically representative view of

candidate suppliers (Line 4). The sample size is calculated using Equation

A.3 taking into account the suppliers in S′ that are in contention for evidence

collection, the budget b left for evidence collection and the given confidence level

and margin of error.

Function collectEvidence (Line 5) obtains sS pieces of evidence, e.g., a mock

order of 10 items. The evidence is collected on the criteria in C applied to the

suppliers in S′ and for the required item types I. This function randomly selects

at most sS pieces of evidence for collection. The remaining budget b is updated

depending on the number sS of pieces of evidence identified (Line 6).

The values of the uncertain criteria in uC are estimated for each candidate

supplier in S once the evidence is collected and assimilated. Function estCri-
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Input: set S of suppliers

Input: set I of item types

Input: set C = cC ∪ uC of crisp and uncertain criteria

Input: set W of weights for the criteria

Input: sets Bi of procuring budgets per item type

Input: matrix Scs,i of suppliers’ capacities

Input: sets Ri with required item types

Input: confidence level cL

Input: margin of error e

Input: budget size b for evidence collection

Output: matrix Xs,i of items contributed per supplier

Output: vector Qc of regret for each uncertain criterion

1: X← {}{}
2: S′ ← S, sS ← 1

3: while b > 0 and sS > 0 and S′ <> {} do

4: sS ← computeSampleSize(S′, b, cL, e)

5: E← collectEvidence(S′, I, sS)

6: b← b− sS

7: ûC← estCriteriaValues(S,E, I,uC, cL, e)

8: X← solveMCSS(S, ûC,W,Bi,Scs,i,Ri)

9: S′ ← {}
10: for s ∈ S do

11: for i ∈ I do

12: oL← false

13: for ĉ ∈ uC do

14: oL← overlapAnalysis(ĉs,i,X,W) or oL

15: end for

16: if Xs,i > 0 or oL then

17: S′ ← S′ ∪ s

18: end if

19: end for

20: end for

21: end while

22: Q← computeCriteriaRegret(S,uC,X)

23: return X,Q

Figure 3: The TEC algorithm
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teriaValues (Line 7) uses the candidate suppliers in S, the set E of collected

pieces of evidence, the required item types in I, the collection of uncertain cri-

teria uC, and a given confidence level cL and margin of error e, to obtain the

set ûC of estimated criteria values for the suppliers in S. These estimates rely

on the evidence collected and are computed using Equation A.5. The margin

of error around each criterion estimate (and for each supplier and item type)

is computed by Equation A.2 and used to build the confidence intervals sur-

rounding these estimates by solving Equation A.4. The confidence intervals

are then analysed for overlap by checking one criterion at a time (as explained

in Subsection 3.2). We use this approach to handle multiple criteria without

considering them simultaneously for the statistical computations. An example

of how the confidence intervals may look at this early stage of the process is

shown in Figure 4 (a), where s2, s4 and s6 are contributing to the solution, s1

and s3 have significant overlap with s2 and s4, respectively, hence, these five

suppliers are considered for further evidence collection to refine their estimates.

In contrast, s5 and s7 are not targeted for additional evidence collection as there

is no statistical possibility of them contributing to the solution.

The next step is to solve the MCSS problem by applying an optimisation

model such as Min-max, as in (Ting & Cho, 2008), to obtain a solution. This

step is expressed as function solveMCSS (Line 8) that requires a collection S of

candidate suppliers, the set ûC of estimated uncertain criteria, the set W of

(a) (b) (c)

Figure 4: Confidence intervals for different amounts of evidence collected through TEC.
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weights representing the user preferences, the set Bi of procuring budgets for

each item type i, the matrix Scs,i of suppliers capacities for each supplier and

item type, and the total number of user requested items of each type Ri. The

result of the optimisation is a matrix Xs,i with the number of items of each type

contributed by each supplier. The set S′, of suppliers for whom evidence needs

to be collected is initialised before processing the overlap analysis.

Having the confidence intervals for each criterion and supplier, and the num-

ber of items of each type that each supplier contributes to a preliminary solution

X, the overlap between these intervals can be analysed. Function overlapAnal-

ysis represents this step (Line 14), by solving Equations 1 and 2 (defined in

Subsection 3.2). The overlap of confidence intervals is evaluated at supplier

level (not criterion or item levels), hence, if at least one criterion for any item

type is evaluated to have significant overlap, then the supplier is considered for

evidence collection – condition or oL in Line 14.

In the next step, suppliers contributing to the solution along with non-

contributing suppliers that have significant overlap with contributing suppliers

(Line 16), are added to the set S′, which holds the suppliers for whom evidence

needs to be collected (Line 17). S′ is used in the next cycle to compute a new

sample size sS. After a few rounds of evidence collection, the scenario can be

visualised as in Figure 4 (b), where there remains overlap between the confi-

dence intervals of s3 and s4, but the suppliers contributing to the solution are

now mostly identified. Suppliers 1, 5 and 7 are no longer considered for evidence

collection.

The iteration continues whilst any of the following conditions hold (Line 3):

(i) there is overlap between confidence intervals of suppliers contributing to the

solution and suppliers that do not contribute; (ii) the sample size sS is greater

than zero, i.e., there is still some evidence that can be collected; (iii) a budget

b remains available for evidence collection.

When the algorithm finishes, the regret Q (Savage, 1951, Inuiguchi & Sakawa,

1995) is computed for the last obtained solution for each criteria under consid-

eration. The regret of solutions can be compared by calculating the difference
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between the last estimated value for each criterion ĉ in the current solution X

and that of the best computed solution using single-criteria optimisation (posi-

tive ideal) X+. This difference is then divided by the range of possible solutions

to obtain the regret of criterion c in solution X as follows (Hsu et al., 2014):

QcZ =
cZ+ − ĉZ
cZ+ − cZ−

(3)

This regret provides a measure of the opportunity loss due to the remaining

uncertainty (Line 22), and finally, the set of regrets Q and the solution matrix

X are returned (Line 23). The solution X contains the number of items of each

type that each supplier contributes. Figure 4 (c) presents a potential scenario at

this stage, where no overlap exists between confidence intervals of those suppliers

contributing (viz., s3, s4 and s6) and those not contributing to the solution (viz.,

s1, s2, s5 and s7). This lack of overlap indicates that the contributing suppliers

should not change if additional evidence is collected, providing a well-founded

approach to deciding when additional evidence is unlikely to be fruitful.

4. Experimentation

We now present an experimental evaluation of the TEC strategy investigat-

ing (i) its properties and effectiveness for varying amounts of evidence, (ii) its

effectiveness with different numbers and ratios of certain and uncertain criteria,

(iii) varying numbers of suppliers, and (iv) varying criteria weights.

4.1. Comparison approaches

To the best of our knowledge, there is no directly comparable approach that

tackles the problem of efficient reduction of uncertainty, pertaining to suppliers,

within supplier selection; hence, we evaluate between TEC and more generic

baselines defined below.
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4.1.1. Random

Random sampling is used as a base case where evidence is collected randomly.

This approach has the advantage that evidence collection is distributed evenly

among candidate suppliers; however, it ignores specific user requirements and

so may collect evidence on suppliers clearly excluded from the solution.

4.1.2. Uncertainty Sampling

Active learning techniques (Settles, 2012) are alternatives for evidence col-

lection. Such techniques learn from collected evidence to determine which ad-

ditional piece of information would most reduce associated uncertainty. In this

way, the largest reductions in uncertainty within the problem can be sought

for the smallest amount of evidence collection (Lewis & Gale, 1994). Among

such techniques, Uncertainty Sampling was chosen based on its applicability to

supplier selection, as it only requires a measure of uncertainty (the margin of

error in our case) to decide which pieces of information to target. Uncertainty

Sampling is expressed using a heuristic that takes into account user preferences

(in the form of weights) and the margins of error, as a measure of uncertainty

over the estimated criteria for a supplier. Evidence is collected first on suppliers

who, for the overall weighted criteria, have the largest margin of weighted error,

taking into account the importance of each criterion to the user. The uncer-

tainty value u of a piece of evidence t belonging to a supplier s is calculated

as:

ut,s = max(w(ĉks
) · e(st, ĉks

)); k = 1, 2, . . . , n (4)

where w is the weight associated with each criterion; e is the margin of error;

ĉks is the estimated value of criterion k for supplier s; and n is the number of

criteria for the scenario being considered.

Uncertainty Sampling is effective for maximising overall uncertainty reduc-

tion, through targeting pieces of evidence belonging to suppliers with the highest

uncertainty, without consideration of the likelihood that they will contribute to
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a solution.

4.2. Evaluation metrics

For comparison we use metrics to measure a supplier selection solution’s

quality in relation to current evidence and the associated regret:

Maximum deviation (MD): A measure of the quality of a supplier selection

solution (in relation to current evidence) considering both overall utility

and the faithfulness of a solution with regards to the DM’s preferences,

see (Ting & Cho, 2008)

Regret (Q): To assess a potential solution in the scenario where there is un-

certainty the regret criterion (Inuiguchi & Sakawa, 1995, Savage, 1951)

can be used to evaluate solutions in terms of risk or opportunity loss that

the DM may have if he/she decides to choose a particular solution as

presented in Equation 3.

4.3. Experimental setup

For the following experiments, a data set with synthetic pieces of evidence

for up to 7 criteria on up to 117 suppliers is gradually sampled to simulate the

evidence collection mechanism. The first step for each experiment is to calculate

a representative sample (See Appendix A.3) of pieces of evidence to obtain

for each criteria and each candidate supplier, in order to compute the initial

estimated criteria values (See Appendix A.1) required by the TEC algorithm.

The experiments evaluate the performance of the TEC approach against the

Uncertainty Sampling and Random competitors, and evaluate varied dimensions

of the problem scenario, such as, the amount of evidence collected (Experiment

1), the number and nature of criteria (Experiment 2), the number of suppliers

(Experiment 3) and the criteria weights (Experiment 4). The results for the

three approaches are compared in terms of which approach provides a solution

closer to the reference solution with less evidence collected, the final actual

solution achieved MD, the regret Q (opportunity loss) associated with that
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solution, and the number of pieces of evidence needed to reach the reference

solution.

The default parameters used, except when a specific parameter is varied

during an experiment, are: 117 suppliers with varied criteria values, 7 types

of items produced by those suppliers, 3 criteria where one of them is certain

(total purchasing cost - C1) and the rest uncertain (number of defects - C2, and

delivery delays - C3), criteria weights for 3 criteria (0.22, 0.44, 0.34), and up to

12,000 pieces of evidence produced. In all the experiments, results have been

averaged over 25 runs and the confidence level and margin of error were 95%

and 0.05 respectively.

4.4. Experiment 1 - Varying the amounts of evidence collection

We firstly explore effects on the solution of varying amounts of evidence.

For Experiment 1, the number of pieces of evidence collected was varied and

the three approaches compared (viz., TEC, Random, Uncertainty Sampling).

Evidence was collected up to the number of pieces required for each approach

to find the reference solution, i.e, the solution computed when there is no un-

certainty in the criteria values. For each approach the MD of each solution, for

both actual and estimated criteria values, was calculated, as was Q per criterion

for each solution.

The MD values for the three approaches for varying amounts of evidence,

up to 12,000 pieces, and the reference solution line, are shown in Figure 5. The

reference solution represents the MD that would be found with no uncertainty

present. From this we observe that for each approach, as more evidence is col-

lected the actual solutions (solid lines) converge towards the reference solution,

as would be expected. Similarly, the estimated solutions (dotted lines) con-

verge towards the reference solution; note they are closer to it, as the algorithm

is using estimates to obtain solutions which, given a partial knowledge based

on the evidence collected, seem better than the reality. In addition, this plot

highlights that, after some initial evidence collection calibration, TEC improves

more swiftly than the other approaches; this suggests that TEC is able to reduce
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Figure 5: MD over varying amounts of evidence

uncertainty in ways that are more helpful to the optimisation. Initially, Uncer-

tainty Sampling with its focus on the largest reduction in overall uncertainty,

without much knowledge of which suppliers may be part of good solutions, is

able to gain the most improvement; however, as more evidence is collected this

focus hinders the efficiency of subsequent collections.

We further compare the approaches by analysing their solutions broken down

by criteria. The values of the 3 criteria for solutions found by the three ap-

proaches after collection of 12,000 pieces of evidence, along with the reference

solution, are shown in Figure 6:Left. From this we observe that TEC has found

a solution which, for the uncertain criteria, is close to that of the reference solu-

tion. The Q for each criterion can also be calculated, as shown in Figure 6:Right.

In such a plot, the bulls-eye represents the reference solution (a solution with

0 regret for any of the criteria) and the amount of regret associated with each

criterion compared to this can be examined by a DM. From this, we observe

that by using TEC the solution found has, for each criterion, significantly lower

regret than that obtained by the other approaches. Such plots of a solution

assist a DM to make a more informed decision in understanding, with respect

to each criterion, the amount of risk attached to the solution.

Finally, comparison can be made between the solution found through TEC

and that found before any evidence collection, in terms of the regret values of
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Figure 6: After 12000 pieces of evidence collected. Left: Breakdown of solution per criterion,
Right: Regret per criterion

each criterion, as shown in Figure 7. The left of this plot shows the impact that

different quantities chosen in the solutions have in terms of the overall values

for each criterion. The regret shown on the right of this plot highlights the

large difference between the amount of regret associated with a solution found

without any evidence collection and one found with evidence collection.

This experiment has shown that, over varying amounts of evidence collec-

tion, TEC is able to efficiently reduce uncertainty, and find improved solutions

utilising less evidence than both Uncertainty Sampling and Random approaches.

4.5. Experiment 2 - Varying the number and nature of criteria

Next we explore the impact of increasing the amount of uncertainty, by

varying the number of criteria that are uncertain. For Experiment 2, the number

of certain criteria was set to one, and the number of uncertain criteria was varied

from two to six. Therefore, five variants with sets of criteria from three to seven

were performed. For each variant the three approaches (viz., TEC, Random

and Uncertainty Sampling) were compared and evidence collected until each

approach reached the reference solution. In each case, the set of criteria weights

were set as equal (for the set of three criteria each weight was 1/3, for set of

four criteria each weight was 1/4 and so forth).
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Figure 7: Solution (left) and regret (right) comparison with and without evidence collected

For each variant set of criteria, the amount of evidence collection required

to reach the reference solution for each approach is shown in Figure 8. Here

we observe that, for each set of criteria, TEC finds the reference solution using

less evidence than Uncertainty Sampling and Random. We further observe

that, as the number of uncertain criteria increases, our approach shows little

variation in the amount of evidence required to reach the reference solution.

Uncertainty Sampling requires similar amounts of evidence for each step as it

does not directly consider the optimisation problem to target the most uncertain

suppliers’ criteria. Conversely, Random requires less evidence, as the number

of uncertain criteria goes up because, as the number of constraints increases,

the number of potential solutions that can satisfy all constraints is reduced;

therefore a solution to the optimisation problem is found earlier in the evidence

collection process. This behaviour can be further appreciated in Figure 9, where

the MD of the solutions, found by the three approaches with 12,000 pieces of

evidence, for the different sizes of criteria sets is shown. This plot highlights that

with an increasing number of criteria, the MD increases because the amount

of compromise required increases; however, the TEC approach, for each set of

criteria, finds a solution with lower MD than the other approaches.
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Figure 8: Evidence needed to reach reference solution per number of uncertain criteria

Figure 9: MD from solution per number of uncertain criteria

We also analyse solutions broken down with respect to each criterion. Figure

10:Left shows the solutions found by the three approaches (and the reference so-

lution) for the set of 7 criteria (1 certain and 6 uncertain), with 12,000 pieces of

evidence. Here we observe how, through TEC, the values obtained for each cri-

terion are close to that of the reference solution, whereas Uncertainty Sampling

and Random have obtained less satisfactory values for the uncertain criteria.

In this plot, we further observe that for the crisp criterion, values have been

found that are better than the reference solution. This is because the refer-

ence solution is an optimal trade-off solution with respect to MD within the

multi-dimensional space. Therefore, a solution may have better values than the

reference solution for some criteria whilst having worse values for other criteria,

such that overall it represents a less optimal trade-off solution than the reference
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Figure 10: One Certain, six Uncertain Criteria after 12000 evidence Left: Breakdown of
solution per criterion, Right: Regret per criterion

solution.

The breakdown of regret for each criterion for each solution is shown in

Figure 10:Right, with the reference solution represented as the bulls-eye. In this

plot, we observe that TEC finds a solution with less regret for each criterion

than Random, and a solution with less regret for most criteria compared to

Uncertainty Sampling (such that the overall regret from our approach is much

less than that from Uncertainty Sampling). From such a plot, a DM is able

to obtain a clear breakdown of the regret and associated risk attached to each

criterion within a solution, leading again to better informed decisions.

This experiment has shown that TEC is able to perform efficient uncertainty

reduction as the amount of uncertainty within the problem increases, with re-

gards to the number of uncertain criteria.

4.6. Experiment 3 - Varying the number of suppliers

Here we explore the effect of varying the number of suppliers. The number

of suppliers was varied in steps of 20, from 20 to 100.

The results of MD for the three approaches, over a range of evidence col-

lected, for the steps of 40 suppliers to 100 are shown in Figure 11. From these
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(a) (b)

(c) (d)

Figure 11: MD from solution. Number of suppliers (a) 40 (b) 60 (c) 80 (d) 100

plots, we observe that, as the number of suppliers increases, TEC’s superior

performance becomes more prominent - this highlights that as the number of

suppliers increases, and thus the size of the space of possible choices of evi-

dence to collect increases, the advantage of more targeted evidence collection

increases. The amount of evidence collection required by each approach to reach

the reference solution in each step is shown in Figure 12. From this, we see that

as the number of suppliers about whom evidence can be collected increases, the

approaches take longer to reach the reference solution. However, at each step

TEC is able to reach the reference solution before Random and Uncertainty

Sampling, and the gap increases as the number of suppliers increases.

4.7. Experiment 4 - Varying criteria weights

Finally, we explore the effects of varying DM preference weights. For Exper-

iment 4, four runs were performed, each increasing the weight of the third (an

uncertain) criterion. Weights for the four runs were: (1/3,1/3,1/3), (0.3,0.3,0.4),

(0.2,0.2,0.6), (0.1,0.1,0.8).

The MD values for the three approaches over the range of evidence collec-
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Figure 12: Evidence required to reach reference solution per number of suppliers

(a) (b)

(c) (d)

Figure 13: MD with W: (a) 1/3,1/3,1/3 (b) 0.3,0.3,0.4 (c) 0.2,0.2,0.6 (d) 0.1,0.1,0.8

tion for each run are shown in Figure 13. From this set of plots the impact

of making one criterion more important is highlighted; we see that TEC more

efficiently utilises a DM’s preference within evidence collection than Random

and Uncertainty Sampling. TEC more efficiently takes into account the user

preferences to determine which suppliers should be considered for evidence col-

lection. Therefore, as the solution favours suppliers that have higher estimated

values for highly-weighted criteria, TEC will consistently target those suppliers

to more efficiently collect evidence aligned with the user’s preferences.

We can see this further through analysis of the breakdown of the solutions
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(a) (b)

(c) (d)

Figure 14: Solution values (left) and regret (right) after 12000 instances of evidence
collected, W: (a) 1/3,1/3,1/3 (b) 0.3,0.3,0.4 (c) 0.2,0.2,0.6 (d) 0.1,0.1,0.8

found after 12,000 pieces of evidence were collected for each run, see Figure 14.

This set of plots highlights that, as a single criterion is given more and more

importance by the DM, TEC consistently targets those suppliers that contribute

to the solution (lines 13 and 14 in Figure 3), such that the uncertainty in the

solution value, for the most important criterion, is reduced the most. Moreover,

the regret of the more important criterion is also most reduced by TEC, thus

decreasing the amount of associated risk within a solution, in line with what is

most important to the DM.

This experiment has shown how TEC is able to efficiently reduce uncertainty

under diverse user preference weights.

5. Conclusions

Within MCSS problems there is inherent uncertainty that could relate to a

DM’s subjective preferences between criteria, supply and demand, and/or infor-
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mation regarding suppliers’ utility values in terms of the set of criteria. Whereas

previous work has explored the first two of these, there has been less work on

uncertainty regarding suppliers’ utility in terms of the criteria, and specifically

how such uncertainties could be efficiently reduced to look to mitigate their ad-

verse effects. It is important to tackle such uncertainty as it can have a major

impact upon the realised utility of a supplier selection solution, compared to its

perceived utility.

This paper proposes the TEC strategy for efficient uncertainty reduction

relating to supplier information, for criteria for which uncertainty is inherent,

by looking to collect additional evidence in an efficient manner. By dynam-

ically considering the likelihood that each supplier will be part of a solution,

along with consideration of the DM’s preferences between criteria, the strategy

reduces uncertainty, enabling swift gravitation towards the solution that would

be produced in the absence of uncertainty. TEC is able to scale to a large

number of suppliers, and our experimentation highlights how its effectiveness

becomes more pronounced as the number of suppliers (and the amount of overall

uncertainty) increases. Moreover, the strategy can handle scenarios where there

is a mix of both uncertain and certain criteria, and it is applicable and effective

for a large range of amounts of evidence collection.

After a given amount of evidence collection, the level of regret associated

with the current solution is calculated. This allows a DM to ascertain the

risk associated with a solution, due to remaining uncertainty, in terms of each

criterion, and so better inform his/her decision making. This can be calculated

each time additional evidence has been collected, informing a DM of the new

level of regret achieved after the additional evidence, helping them triangulate

how much evidence they wish to collect, informed by its ongoing productiveness.

The effectiveness, adaptability and scalability of TEC has been compared

through experimentation against alternative approaches, including an approach

based on active learning, and we have shown how TEC can achieve efficient

reduction in uncertainty, requiring up to three times less evidence than compa-

rable approaches.
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Regarding the practicalities of applying the TEC strategy, one implication

is in terms of its requirement for a sufficient amount of evidence to be effective.

Although, as we showed within the experimentation, the TEC strategy can

be effective over a range of evidence amounts, for scenarios in which limited

evidence can be collected TEC’s capacity and aptitude is limited. For example,

for a new firm that makes infrequent but expensive orders, of few items, from

suppliers that are not forthcoming with detailed performance history, it could

be difficult to collect sufficient evidence for the TEC strategy to be effective. As

considered in the discussion on Figure 5, it is the case that initially, while the

amounts of evidence are small, TEC can be outperformed.

The more uncertainty that is present, the more effective is the TEC strategy;

with its effectiveness diminishing as the amount of uncertainty falls. We see this

through the gradient of the TEC line in Figure 5; where initially, with more

uncertainty present, the more dramatically TEC is able to tackle and reduce

it; this tails off as the amount of remaining uncertainty becomes smaller, and

tends towards zero. Therefore, in scenarios for which there is very little initial

uncertainty, TEC would be less effective than in scenarios for which there is a

lot. Conversely, it is likely that such scenarios, with modest uncertainty, may

not require a targeted approach, that focuses on uncertainty reduction, such as

TEC.

Future work will investigate how to expand the applicability of TEC to a

wider set of scenarios, as well as to explore some of the scenarios discussed in

the practicalities above. For example, a variation of the TEC strategy will be

explored for use when it is know a priori that only a small amount of evidence

is or can be collected. When it is known that a large enough amount of evidence

is to be collected for TEC to suitably warm up, we can be assured, as can be

seen from inspecting a plot such as Figure 5, that TEC will be effective. In such

cases, it would be irrelevant that TEC takes time to get up to speed; however,

if it were known that constraints dictated that only a small amount of evidence

is to be collected, a variation of the strategy could explore how to modify its

operation so as to be more effective in such scenarios.
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We will also consider how TEC could be extended to scenarios for which

evidence collection happens over a much longer time-frame than we currently

envisage. Potentially, evidence that is collected in the distant past may lose

some of its currency. For example, evidence collected from a supplier a number

of years ago but who has spend the intervening time since its collection looking

to actively improve its quality will no longer be as useful to us as more recent ev-

idence about the supplier. Therefore, further work will explore how TEC could

be extended to best handle such a scenario. Considering longer term scenarios

could also allow exploration of interesting conditions, such as how to best handle

the amalgamation of evidence collected over a long time for separate suppliers

who have subsequently merged and become one entity.
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from the Mexican National Council for Science and Technology (CONACyT).

References

Abel, E., Mikhailov, L., & Keane, J. (2015). Group aggregation of pairwise

comparisons using multi-objective optimization. Information Sciences, 322 ,

257–275.

Amorim, P., Curcio, E., Almada-Lobo, B., Barbosa-Póvoa, A. P., & Gross-
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Appendix A: Calculating criteria confidence intervals

To evaluate performance of suppliers ratio measures (Stevens, 1946) can be

utilised to indicate the proportion of entities belonging to categories or groups.

Criteria such as on-time delivery and product/service quality, which rank highly

in importance according to “The Supplier Performance Measurement Bench-

mark report”1, are supportable within TEC through the form that the evidence

to be collected can take (e.g., the proportion of items delivered on time can be

updated by using the results of more orders). Specifically, the evidence needs

to be classified according to user expectations, i.e., on time or not on time.

To improve estimates on the suppliers’ criteria additional evidence can be

collected from different sources depending on the criterion being considered.

Examples of evidence sources that may help reduce uncertainty in TEC are: (i)

Customer interviews: collect information by face-to-face or remote interactions

about a particular criterion, (ii) Mock orders: submit a relatively small but rep-

resentative request to the supplier, (iii) Market assessment (reviews): perform

a survey or search among diverse supplier’s reviews over a particular item to

compare criterion values, and (iv) On-site visits: assess a particular process,

policy or task to be measured where the products or services are generated.

Uncertainty associated with criteria values used to evaluate the performance

of candidate suppliers can be modelled through statistical concepts such as

sample size, sampling errors and confidence intervals (Bulmer, 1979). Sampling

error can be reduced by collecting additional evidence. TEC uses criterion errors

and their confidence intervals surrounding the estimated value to determine

which suppliers need more evidence to reduce uncertainty and improve solutions.

1http://www.lyonsinfo.com/_resources/aberdeen_spms_report.pdf
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The formula to compute the estimated value for a criterion c (ratio) is:

ĉ =
tpc

tpc + fpc
(A.1)

where tp is the amount of evidence expected for criterion c (e.g., on-time deliver-

ies) or true positives, and fp is the amount of evidence unexpected for criterion

c (e.g., delayed deliveries) or false positives.

The sampling error e is computed using the following equation:

eĉ = zcL ·
√

ĉ · (1− ĉ)

n
(A.2)

The sample size ss, required to apply the statistical analysis over a sample

providing a significant representation of the total population, is computed as:

ssĉ = (zcL)2 · ĉ · (1− ĉ)

(eĉ)2
(A.3)

The confidence interval CI around the estimated criterion value ĉ is:

CIĉ = ĉ± eĉ (A.4)

where ĉ is the estimated value of c, n is the amount of evidence collected for c,

tpc is an expected item for criterion c, fpc is an unexpected item for criterion c,

z is the z–score for a given confidence level cL (assuming a normal distribution),

and eĉ is the sampling error for criterion c.

To ensure that there is a minimum population size to apply the statistical

formulae and to distinguish the type of data distribution (Corder & Foreman,

2009), additional constraints of (n · ĉ) ≥ 15, and (n · (1 − ĉ)) ≥ 15 must be

fulfilled. The notation ĉhj,k
is used to represent the estimated value of criterion

h evaluated for supplier j and item-type k.

From a set of estimated item-type values of a criterion for a supplier, an

estimated value of the criterion for the supplier can be computed. The estimated
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average value of criterion h for supplier j can be calculated via:

ĉhj =
1

l
·

(
l∑

k=1

ik

)
(A.5)

where l is the number of item-types.
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